

Perfect Cubes

Perfect Squares that you should know

$$7^3$$

$$2^3$$

$$8^3$$

$$3^3$$

$$6^3$$

$$10^3$$

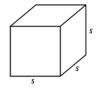
Cube Roots

Perfect Cube Roots that you should know

$$\sqrt[3]{64}$$

$$\sqrt[3]{8}$$

$$\sqrt[3]{216}$$


Do Now

Find the edge length of the cube.

1. Volume = 64,000 ft³ **2.** Volume =
$$\frac{1}{216}$$
 ft³

2. Volume =
$$\frac{1}{216}$$
 ft³

Finding Cube Roots

Find each cube root.

- **a.** $\sqrt[3]{8}$
- **b.** $\sqrt[3]{-27}$
- **c.** $\sqrt[3]{\frac{1}{64}}$

Evaluating with Cube Roots

Evaluate each expression.

a.
$$2\sqrt[3]{-216} - 3$$

b.
$$(\sqrt[3]{125})^3 + 21$$

On Your Own

Find the cube root.

1.
$$\sqrt[3]{1}$$

2.
$$\sqrt[3]{-34}$$

1.
$$\sqrt[3]{1}$$
 2. $\sqrt[3]{-343}$ **3.** $\sqrt[3]{-\frac{27}{1000}}$

Evaluate the expression.

4.
$$18 - 4\sqrt[3]{8}$$

4.
$$18 - 4\sqrt[3]{8}$$
 5. $(\sqrt[3]{-64})^3 + 43$ **6.** $5\sqrt[3]{512} - 19$

6.
$$5\sqrt[3]{512} - 19$$

Evaluating with Cube Roots

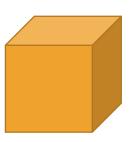
Evaluate
$$\frac{x}{4} + \sqrt[3]{\frac{x}{3}}$$
 when $x = 192$.

On Your Own

Evaluate the expression for the given value of the variable.

7.
$$\sqrt[3]{8y} + y$$
, $y = 64$

8.
$$2b - \sqrt[3]{9b}, b = -3$$


Critical Thinking...

Find the surface area of the baseball display case.

With Your Partner

9. The volume of a music box that is shaped like a cube is 512 cubic centimeters. Find the surface area of the music box.

Did You Understand?

Explain the difference between $\sqrt{64}$ and $\sqrt[3]{64}.$